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Abstract 

Background Prostate cancer is a significant health concern, particularly among African American (AA) men who 
exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular 
mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better 
outcomes.

Methods Employing a multi‑omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina 
methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non‑
tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial 
disparities in prostate cancer.

Results When comparing tumor and adjacent non‑tumor prostate tissues, we found that DNA hypermethylated 
regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways 
and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors 
from AA men. We identified race‑specific inverse associations of DNA methylation with expression of several andro‑
gen receptor (AR) associated genes, including the GATA  family of transcription factors and TRIM63. This suggests 
that race‑specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR 
inhibition on race‑specific gene expression changes, we generated in‑silico patient‑specific prostate cancer Boolean 
networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF‑β, IDH1, and cell 
cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which 
revealed differential expression of genes related to microtubules, immune function, and TMPRSS2‑fusion pathways, 
specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk 
of disease progression in a race‑specific manner.
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Background
Prostate cancer is a devastating disease, with almost 
300,000 men diagnosed each year and ~12% succumb-
ing to this disease annually [1]. African American (AA) 
men have the highest prostate cancer incidence and 
associated mortality compared to any other racial sub-
group [1, 2]. Multiple factors, including socioeconomic 
status, access to healthcare, and environmental factors, 
contribute to racial disparities in prostate cancer [3, 4]. 
However, studies that adjusted for socioeconomic sta-
tus and healthcare access show that racial disparities 
in prostate cancer incidence still prevail [5, 6]. Even 
when AA men are diagnosed at a younger age with less 
aggressive primary prostate cancer, defined as having a 
Gleason score of 6 or less, they still have an increased 
mortality rate [6]. These observations underscore the 
importance of understanding the underlying biology 
of primary prostate cancer associated with clinical out-
comes in AA men.

Delineating molecular factors, including epigenetic 
alterations, that contribute to disease biology requires 
a thorough investigation of newly diagnosed and ther-
apy naïve prostate cancer from AA men. Increased 
promoter DNA methylation at GSTP1, PRDM13, and 
RAR-β2, as well as other genes, are frequently found 
in prostate tumors from EA and AA men [7–9]. Unsu-
pervised hierarchical cluster analyses show that DNA 
hypermethylation patterns at CpG islands, which 
include transcription start sites, are similar between 
different regions from the same prostate tumor [10]. In 
advanced prostate cancer, DNA methylation patterns 
are similar between tumors obtained from different 
metastatic sites from the same individual [11]. These 
observations suggest that DNA methylation events 
maintain intratumoral, intraindividual, and clonal sta-
bility in prostate cancer. These studies have established 
DNA methylation as an attractive clinical biomarker; 
however, most of these biomarkers are derived from 
clinical samples solely obtained from EA men. In pros-
tate cancer from AA men, DNA methylation alterations 
at specific loci, including ESR2 and FGF6, are asso-
ciated with higher Gleason Score tumors [12]. DNA 
methylation at NKX2-5 also correlates to AA ancestry 
in prostate tumors and adjacent non-tumor tissues [7]. 

These previous contributions demonstrate the impor-
tance of differential DNA methylation patterns in pros-
tate cancer from AA men.

Alterations to the epigenome are important, given 
DNA methylation regulates gene expression by coop-
erating with other epigenetic modifying enzymes, such 
as EZH2, that can activate or repress gene transcrip-
tion [13]. DNA methylation patterns can also dictate 
transcription factor binding; for example, the pioneer 
transcription factor GATA4 binds preferentially to 
methylated CpG sites [14]. Whether the interaction 
between DNA methylation and associated proteins is 
distinct between prostate cancer of AA and EA men is 
not known. Understanding these interactions will help 
establish how epigenetic processes relate to altered 
transcriptional programs fundamental to prostate can-
cer biology in AA men. Consequently, it will uncover 
actionable biology to reduce racial disparities in pros-
tate cancer.

Epigenetic-induced gene expression changes can 
result in altered downstream signaling; however, these 
changes are often pleiotropic with impacts on multi-
ple pathways in a given cell and heterogenous tumor. A 
novel approach to study crosstalk between known sign-
aling pathways in prostate cancer, which also accounts 
for mutations and copy number alterations, is the uti-
lization of patient-specific Boolean networks [15]. 
These integrated platforms have never been utilized to 
delineate prostate cancer biology in the context of race. 
Disease biology and response to therapy are naturally 
interconnected biochemical networks giving rise to 
complex and dynamic clinical phenotypes [16]. There-
fore, a systems pharmacology approach is uniquely 
suitable for investigating race-specific biological differ-
ences in primary therapy naïve tissues, and assessing 
how they may differentially respond to standard-of-
care therapies.

A significant hindrance in identifying molecu-
lar determinants of prostate cancer racial disparities 
comes from the limited number of samples and studies 
utilizing multi-omics approaches to directly compare 
primary tumors from AA and EA men. In the current 
study, we intentionally included primary prostate can-
cer and adjacent non-tumor tissues from AA men and 

Conclusions Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, 
offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and asso‑
ciated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes 
in the context of AA and EA men. Further investigation into these identified pathways may lead to the development 
of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial 
backgrounds.
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performed a comparative analysis with similar samples 
obtained from EA men. Although we observed similar 
DNA methylation patterns between prostate tumors 
and adjacent non-tumor tissues, these patterns are 
enriched for distinct chromatin-modifying enzymes. 
These included EZH2 in DNA hypermethylated regions 
of prostate tumors in AA and EA men and CTCF in 
hypomethylated regions of only prostate tumors in AA 
men. Utilization of our patient-specific prostate cancer 
Boolean networks revealed the potential role of pro-
longed AR therapy in inducing gene expression changes 
in TGF-β, IDH1, and cell cycle pathways specifically 
in prostate cancer of AA men. Furthermore, down-
regulation of a subset of immune-associated pathways 
in prostate tumors was associated with reduced risk 
of disease progression only in AA men. Overall, our 
study begins to dissect race-specific DNA methylation 
and AR-mediated transcriptional alterations that may 
underlie prostate cancer biology and are associated 
with clinical outcomes.

Methods
Cohorts analyzed in study
All clinical samples were collected with informed con-
sent between 2005 and 2017, before any treatment and 
at the time of radical prostatectomy at Roswell Park. 
All samples were de-identified before analyses. Patient 
demographic and clinical characteristics were reported 
by self-identified race and compared using the mean, 
median, standard deviation, and range for continuous 
variables, and by using frequencies and relative frequen-
cies for categorical variables (Additional File 1, Table S1). 
Comparisons were made using the Mann-Whitney U and 
Fisher’s exact tests, as appropriate.

Samples from a total of 41 EA patients and 35 AA 
patients were collected for analysis. DNA methylation 
was analyzed via methylation array (described in subse-
quent sections) on 37 tumor (T) and 37 non-tumor (NT) 
samples from EA patients, and 32 T and 30 NT samples 
from AA patients. RNA sequencing was performed on 31 
T and 27 NT samples from AA patients, and 32 T and 
31 NT samples from AA patients. Between these two 
cohorts, these was an overlap comprised of NT = 27 
and T = 31 AA patient samples and NT = 31, T = 32 EA 
patient samples. This overlapping cohort was analyzed 
via multi-omics analysis (described in subsequent sec-
tions), and characteristics are described in Additional File 
1, Table S2. N = 15 patient samples (AA: 7, EA: 8, all T) 
were further profiled via whole-exome sequencing. This 
cohort (n=15) was utilized for Boolean network genera-
tion and modeling of AR inhibition (described in subse-
quent sections). Tissue microarray (TMA) analysis of 
AR expression was performed on prostate tumor tissues 

and adjacent non-tumor tissues from AA (T: 107, NT: 
107) and EA men (T: 133, NT: 133) (TMA demograph-
ics described in Supplementary File 1, Table S3). 20 AA T 
samples from the TMA overlap with the cohort used for 
RNA sequencing. There is no overlap between EA TMA 
and sequencing samples.

DNA methylation and DMR annotation
DNA extraction was performed using a Qiagen Qiamp 
DNA mini kit (Cat#51304). 10 EA (non-tumor (NT) = 5, 
tumor (T) = 5) and 62 AA (NT = 30, T = 32) samples 
were analyzed by the Illumina Infinium Human Meth-
ylation450 BeadChip DNA methylation array (subse-
quently referred to as 450K array), which includes over 
450,000 methylation sites per sample. Additional EA 
(NT = 32, T = 32) samples were analyzed by the Ilumina 
Infinium MethylationEPIC array, which includes over 
850,000 methylation sites and covers over 90% of the 
450K array content (Additional File 2, Fig. S1A). Briefly, 
the Infinium methylation protocol combines bisulfite 
conversion of genomic DNA and whole genome ampli-
fication with direct, array-based capture and scoring on 
the CpG loci. First, DNA samples are quantitated and 500 
ng DNA are plated in 96-well plates as per layout suit-
able for 8-sample EPIC chip format. The DNA samples 
are treated with sodium bisulfite using an Illumina-spe-
cific bisulfite conversation kit (Zymo EZ DNA methyla-
tion kit). Subsequently, DNA samples are isothermally 
amplified in an overnight step to increase the amount of 
DNA. Whole genome amplified DNA samples are then 
fragmented, precipitated, resuspended, and hybridized 
to EPIC BeadChip. The chips are incubated overnight 
for allele-specific hybridization and washed the next day 
to remove unhybridized and nonspecifically hybridized 
DNA. Following the wash, chips undergo single base 
extension and staining. Two bead types correspond to 
each CpG locus, one bead type corresponds to methyl-
ated (C) another bead type to the unmethylated (T) site. 
Lastly, the chips are scanned using the Illumina iScan 
system, using a laser to excite the fluorophore of the 
single-base extension product on the beads. The scanner 
records high-resolution images of the light emitted from 
the fluorophores. The raw image data is processed using 
Illumina’s GenomeStudio V2011.1. Minfi (v1.38), a meth-
ylation array Bioconductor package, was used to read 
raw intensities, preprocess, and normalize values from 
methylation arrays [17]. Probes with detection P-values 
>0.01 were filtered out before preprocessing. Preprocess-
Funnorm was used to normalize individual arrays. The 
combineArrays function was used to merge data from 
the 450K and EPIC arrays so that only the probes that 
overlap between the 450K and EPIC arrays were used for 
further analyses (total 449,636 probes, Additional File 2, 



Page 4 of 17Ramakrishnan et al. Genome Medicine           (2024) 16:52 

Fig. S1A). M value was calculated as M = log2((M+a)/
(U+a)). M is methylated intensity, U is unmethylated 
intensity, and a is a constant offset (by default, a = 100). 
The comBat function from sva (v3.40.0), a Bioconductor 
package [18], was used for batch-correction of M-values 
(Additional File 2, Figs. S1B and S1C). DMRcate (v2.12), 
an R package, [19] was used to annotate and establish dif-
ferentially methylated regions (DMRs) between tumors 
and adjacent non-tumor tissues as well as race-specific 
differences in DMRs. DMRs were ranked by Fisher’s mul-
tiple comparison statistic based on maximum differences 
(maxdiff) between CpG probes in a given DMR and mean 
differences (meandiff) that calculate the average of differ-
ences between each CpG probe in a given DMR. A Fisher 
statistic of P<0.05 was considered to be significant. The 
rmSNPandCH function from DMRcate was used on the 
overlapping sites to remove CpGs within 2bp of a known 
SNP. We ran the LISA cistrome pipeline [20] on identi-
fied DMRs to infer enrichment of chromatin remodeling 
enzymes and transcription factor motifs. DNA methyla-
tion array datasets are deposited into NCBI GEO, acces-
sion numbers GSE262522 and GSE262524.

DMR pathway enrichment
DMRs identified by maxdiff values were used for enrich-
ment analysis. DMRs with opposing maxdiff and mean-
diff values were excluded. Gene sets were acquired from 
the Molecular Signatures Database (MSigDB) [21], which 
included curated gene sets (C2), ontology gene sets (C5), 
oncogenic signature gene sets (C6), and hallmark gene 
sets (H). Gene set enrichment analysis of DMRs was then 
performed using the leading-edge gene for each region 
and maxdiff as the test statistic with the fgsea R package.

Manhattan Plots for DMRs
The median location for each DMR was calculated and 
plotted on the x-axis of sequential base pairs along chro-
mosomes. Hypermethylated DMRs were plotted as −
log10(FDR) on the y-axis, while hypomethylated DMRs 
were plotted as log10(FDR) on the y-axis. This allowed 
for the visual separation of hyper- and hypo- methylated 
DMRs. The top ten hyper- and hypo- methylated DMRs 
were labeled using the leading-edge gene for each region 
where applicable, or the DMR identified from the analy-
sis. Dashed lines at +/− log10(.05) and +/− log10(5e−8) 
represent individual DMR significance and genome-wide 
significance, respectively.

RNA sequencing
Paired-end RNA sequencing was performed on RNA iso-
lated from clinical samples (AA: NT = 27, T = 31, EA: 
NT = 31, T = 32). RNA extraction was performed using a 
Qiagen miRNeasy mini kit (Cat#217044). Briefly, 500 ng 

total RNA was used to prepare the sequencing libraries 
with the Illumina TruSeq Stranded Total RNA Library 
Prep Kit with Ribo-Zero Gold (Illumina Inc, Cat. No. 
RS-122-2301). Following the manufacturer’s instructions, 
rRNA was depleted from total RNA, and the remaining 
RNA was purified, fragmented, and primed for cDNA 
synthesis. Fragmented RNA was reverse-transcribed 
into first-strand cDNA using random primers. The RNA 
template was removed, and a replacement strand was 
synthesized by incorporating dUTP in place of dTTP to 
generate double-stranded (ds) cDNA. AMPure XP beads 
(Beckman Coulter) were used to separate the ds cDNA 
from the second strand reaction mix resulting in blunt-
ended cDNA. A single “A” nucleotide was added to the 
3′ ends of the blunt fragments. Multiple indexing adapt-
ers, containing a single “T” nucleotide on the 3′ end of 
the adapter, were ligated to the ends of the ds cDNA 
and prepared for hybridization onto a flow cell. Adapter 
ligated libraries were amplified by PCR, purified using 
Ampure XP beads, and validated for appropriate size on 
a 4200 TapeStation D1000 Screentape (Agilent Technolo-
gies, Inc.). The DNA libraries were quantitated using the 
KAPA Biosystems qPCR kit and pooled together in an 
equimolar fashion, following experimental design crite-
ria. Each pool was denatured and diluted to 2.4 pM with 
1% PhiX control library added. The resulting pool was 
loaded into a 150-cycle NextSeq High Output Reagent 
cartridge for 75-cycle paired-end sequencing and run 
on a NextSeq500 following the manufacturer’s recom-
mended protocol (Illumina Inc.).

The raw reads that passed the quality filter from Illu-
mina RTA were first preprocessed using FastQC (v0.10.1) 
[22] for sequencing base quality control to be mapped to 
the human reference genome GrCh38 and corresponding 
RefSeq annotation database using TopHat (v2.0.13) [23]. 
A second round of quality control using RSeQC (v2.6.5) 
[24] was applied to mapped bam files to identify poten-
tial RNA-seq library preparation problems. From the 
mapping results, read counts for genes were obtained by 
HTSeq [25] using the intersection-strict option. Differen-
tially expressed (DE) genes were identified using DESeq2 
(v1.38.3) [26]. Differential expression rank order was 
utilized for subsequent Gene Set Enrichment Analysis 
(GSEA), performed using the clusterProfiler package in 
R. Gene sets queried included the Hallmark, Canonical 
pathways, and GO Biological Processes Ontology collec-
tions available through the Molecular Signatures Data-
base (MSigDB) [21].

Multi‑omics integration analyses
Maxdiff (from the methylation array data) and log2(Fold 
Change) (log2FC) (from the RNAseq expression data) 
statistics were utilized to quantify effect sizes (AA: NT 
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= 27, T = 31, EA: NT = 31, T = 32). We used only the 
clinical specimens that were analyzed by both RNA 
sequencing and methylation array for multi-omics inte-
gration analyses. Clinical characteristics for this overlap-
ping patient cohort are summarized in Additional File 1, 
Table  S2. Gene symbols from the expression data were 
matched with their corresponding counterparts overlap-
ping probe symbol(s) within a DMR. Since each DMR 
consists of many probes, the one with the largest probe-
wise beta value range was picked as a representative for 
a given DMR. Sample β-values from that representa-
tive probe were extracted and matched with the corre-
sponding sample DESeq2-normalized expression value. 
β-values are calculated as β = M/(M+U+a). M is methyl-
ated intensity, U is unmethylated intensity, and a is a con-
stant offset (by default, a = 100). Spearman correlation 
was utilized to analyze THE relationship between DNA 
methylation and RNA sequencing.

Roswell data formatting for Boolean network modeling
DNA was prepared for sequencing from fresh frozen 
samples via a Qiagen Qiamp DNA mini kit (Cat#51304) 
for n = 15 patient samples (AA: 7, EA: 8). Only tumor 
samples with purity above 70% tumor nuclei con-
tent were used for analysis. We initiated our process 
with high-quality paired-end reads from whole exome 
sequencing that passed the Illumina RTA filter. These 
reads were aligned against the NCBI human reference 
genome (GRCh37) utilizing a suite of bioinformatics 
tools, including BWA [27] and Samtools [28]. Multiple 
variant detection tools, including Mutect2 [29], VarScan2 
[30], VarDict [31], SomaticSniper [32], MuSE [33], and 
Strelka2 [34], were employed to identify potential single 
nucleotide variants (SNVs) and insertions and deletions 
(indels). The major-vote consensus mode by Somatic-
Seq [35] was used to further filter all putative somatic 
variants. Finally, we annotated all identified mutations 
using the Variant Effect Predictor (VEP) [36], leverag-
ing its comprehensive collection of genomic annotations 
sourced from the Ensembl database. All analyses were 
conducted following best practices and utilizing repro-
ducible pipelines facilitated by the RcwlPipelines pack-
age [37]. SNPs were organized in a matrix with columns 
indicating usual genomic locations, features, SNP type 
and dbSNP identifier followed by Polyphen and SIFT 
annotations.

Allele-specific somatic copy number variations (CNVs) 
were identified utilizing FACETS (v0.6.2) [38]. By extract-
ing reference and variant allele read counts from the bam 
file for the polymorphic sites present in the dbSNP data-
base, FACETS performed a joint segmentation analy-
sis on both total and allelic copy ratios. Results include 
genomic ranges and log-ratio (lRR), values which are 

broken down to determine per sample ploidy (−2: lRR ≤ 
− 1.1, − 1: − 1.1< lRR ≤ − 0.2, 0: − 0.2 < lRR ≤ 0.2, 1: 0.2 < 
lRR ≤ 0.7, 2: lRR > 0.7 ). Each range is assigned to result-
ing overlapping genes using GRCh37 refSeq annotation. 
Data were transformed by creating an incidence matrix 
using ploidy values with the gene annotation symbols as 
rows and columns with the total number of samples.

For gene expression, raw counts and normalized data 
were formatted as matrices where rows are gene symbols 
and columns are samples.

AR inhibition in prostate cancer Boolean network
Fifteen subject-specific Boolean network models of pros-
tate cancer signaling were generated for the Roswell Park 
cohort through methods developed by Béal et  al. [39]. 
313 subject-specific Boolean network models of pros-
tate cancer signaling were extracted from a prior analysis 
that utilized patient data from The Cancer Genome Atlas 
[15]. The structural network is comprised of 133 nodes 
in which each node represents a gene or protein and is 
associated with discrete levels of activity (0 or 1). Four 
hundred ninety-nine edges connect the nodes, each rep-
resenting a regulatory interaction (positive or negative) 
between the source and target nodes [40]. Subject-spec-
ificity is defined by the model parameters obtained from 
discrete data, such as mutations and copy number altera-
tions, and continuous data, such as RNA sequencing. The 
models were perturbed to mimic drug-specific effects, 
and each patient model was simulated to steady state to 
capture the node’s activity over an arbitrary unit of time. 
In this study, the androgen receptor (AR) node activity 
was fixed to a discrete value of 0 to mimic the effect of 
an AR inhibition or pharmacological antagonism, and 
the individual subject-specific models were simulated 
to steady state. The changes in the area under the curve 
(AUC) of each node before and after perturbation were 
calculated according to the following equation:

with bp and ap subscripts denoting before and after per-
turbation, and values were compared between AA and 
EA men. Network nodes were grouped according to their 
association with relevant signaling pathways in prostate 
cancer biology. Differences in the change of AUC values 
after AR inhibition between AA and EA men were tested 
for statistical significance using the Mann-Whitney U 
test adjusted multiple comparisons using the Benjamini-
Hochberg procedure if the change in AUC values were ≥ 
3% [41]. An alpha value of 0.05 was considered statisti-
cally significant.

�AUC (%) =
AUCap − AUCbp

AUCbp

× 100
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Immunohistochemistry, Image J quantitation, 
and statistical analyses
Tissue microarrays (AA, n = 107; EA, n = 133) were 
stained with an AR antibody (Agilent, #M3562) and 
digitally scanned using an Aperio Scanscope. Individual 
prostate cancer images were captured with Scanscope, 
and the ImmunoRatio plugin (ImageJ, NIH) was used 
to analyze the percentage of AR-positive nuclei. For the 
percent of AR-positive nuclei, the association with each 
patient characteristic was evaluated using the one-way 
analysis of variance (ANOVA) model. The percent of AR-
positive nuclei was then modeled as a function of each 
patient characteristic, race, or age and their interaction 
using a general linear model. F-tests about the appropri-
ate linear combination of model estimates were used to 
evaluate: (A) the association between the patient charac-
teristic and AR within each race or age group; and (B) the 
racial or age effect on the association between AR and 
the patient characteristic (i.e., by testing the interaction 
term). All analyses were conducted in SAS v9.4 (Cary, 
NC) at a significance level of P < 0.05.

GSVA scoring and HR calculations
Gene Set Variation Analysis (GSVA) scoring was per-
formed with the GSVA R package [42]. GSVA scores 
were built on single sample GSEA by using a non-para-
metrical approach and Kolmogorov–Smirnov (KS)-like 
random walk statistic after normalizing the gene expres-
sion profiles with appropriate kernel estimation functions 
depending on whether expression levels were continuous 
or counts data. Enrichment scores compared the over-
all expression of two samples within the same gene set. 
Given a gene set, samples with positive enrichment val-
ues had more genes at the top-rank expression levels than 
samples whose genes had lower levels (for example, the 
bottom of the ranked expression list) with respect to the 
gene set. RNA-seq dataset is deposited into NCBI GEO, 
accession number GSE237995 [43].

Progression-free survival (PFS) was defined as the 
time from radical prostatectomy until persistent disease, 
recurrence, or last follow-up. For patients with persis-
tent disease, the PFS was calculated as 1 day. Persistent 
disease after radical prostatectomy for our purposes was 
defined as follows: 1. PSA levels don’t fall to undetectable 
levels after surgery (> 0.03 to < 0.2 ng/mL) and is asso-
ciated with adverse pathological factors (stage T3a or 
above, diffusely positive surgical margins) and 2. PSA lev-
els > 0.2 ng/mL.

Hazard ratio (HR) estimation via Cox proportional haz-
ards model regression analyses were carried out to exam-
ine the association with PFS across gene expression and 
GSVA biological pathway scores. This semi-parametric 
model regression model allows to study the relationship 

between survival endpoints (this case PFS) and other 
predictor variables of interest. The model’s coefficients 
inform about direction and magnitude of the covari-
ate effects on the hazard function. Positive coefficient 
values indicate increased hazard of the event to occur, 
while negative values can be interpreted as ‘protection’ or 
decreased hazard of the event occurring. Three separate 
models were fitted to estimate HR scores for all samples 
and individually for each race. The Benjamini-Hochberg’s 
method was used to account for multiple testing and 
identify significant genes (adjusted P-value < 0.1). Effect 
sizes were reported using HR.

Results
Hypomethylated regions of DNA are enriched 
for chromatin remodelers in a race‑specific manner
We examined primary, therapy naïve tumor and adja-
cent non-tumor tissues from AA (n = 31 T, 27 NT) 
and EA men (n = 32 T and 32 NT) to determine DNA 
methylation levels in prostate cancer (demographics in 
Additional File 1, Table S1). Principal component analy-
sis (PCA) showed that DNA methylation, measured as 
β-value for each CG site (described in the “Methods” sec-
tion), distinguishes prostate tissues between AA and EA 
men (Additional File 2, Fig. S2A), based on PC1 and PC2. 
A PERMANOVA test (10,000 permutations) confirms 
that tumor samples are significantly different between 
races (R2= 0.135, pval < 0.0001). PCA did not clearly dif-
ferentiate between tumor and adjacent non-tumor tis-
sues based on DNA methylation patterns (Additional File 
2, Fig. S2A). As a first step to investigate tumor-specific 
changes in DNA methylation, we established differen-
tially methylated regions (DMRs) using “DMRcate,” an 
R package [19]. We identified DMRs between tumor 
and adjacent non-tumor tissues within each race. The 
top 1000 DMRs, from both race- and tissue- compari-
sons, are represented in Additional File 2, Fig. S2B, and 
all DMRs are listed in Additional File 3. An increase in 
DNA methylation in tumors compared with adjacent 
non-tumor tissue is referred to as hyperDMRs (top half, 
represented as −log[10]FDR, in Fig.  1A–B; Additional 
File 2, Fig. S3A), and a decrease in methylation in tumors 
compared with adjacent non-tumors is referred to as 
hypoDMRs (bottom half, represented as log[10]FDR, in 
Fig.  1A–B; Additional File 2, Fig. S3A). The number of 
significant hyperDMRs was higher than hypoDMRs in 
prostate tumors (AA: HypoDMR = 6280/HyperDMR 
= 11,866 Fig. 1A; EA: HypoDMR = 7715/HyperDMR = 
22,042 Fig.  1B). The number of hyperDMRs was twice 
as low in AA men compared to EA men. These obser-
vations, in addition to the PCA plots and lower number 
of hyperDMRs, suggest that DNA methylation between 
tumors and adjacent non-tumor tissues is more similar in 
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AA men than EA men. Conversely, we found that adja-
cent non-tumor tissues from AA men have increased 
DNA methylation at specific gene regions compared to 
EA men (red gradient vs blue gradient in adjacent non-
tumor tissues, purple rectangles in Additional File 2, Fig. 
S2B).

We assigned DMRs to specific genes based on loca-
tion and then performed gene set enrichment analysis 
(GSEA) on these DMR-associated genes to identify spe-
cific pathways that were enriched between comparison 
groups. HyperDMRs were enriched in the PRC2 and 
H3K27me3 pathways in a race-independent manner 

Fig. 1 Differentially methylated regions between prostate tumors from AA and EA men reveal race‑specific enrichment of pathways and transcript 
factors. A and B Manhattan plots representing differentially methylated regions in prostate tumors from AA (A) and EA men (B) across all 
chromosome locations. HyperDMRs are in the top half, represented as −log[10]FDR and hypoDMRs are in the bottom half, represented as log[10]
FDR. C and D Enriched pathways associated with DMRs in prostate tumors from AA (C) and EA (D) men. E and F Lisa‑derived enrichment 
of epigenetic regulators enriched in prostate tumors from AA (E) and EA men (F). X-axis: represents hypermethylated regions in prostate tumors, 
and Y-axis: represents hypomethylated regions in prostate tumors
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(Fig. 1C, D). The association of hyperDMRs with PRC2/
H3K27me3-associated pathways was further supported 
by LISA-based (epigenetic Landscape In Silico deletion 
Analysis) results. The LISA-based computational algo-
rithm uses ChIP-derived histone marks and chromatin 
accessibility profiles from Cistrome databases to predict 
cis-regulatory elements that can regulate gene expression 
in a given dataset [20]. We applied LISA to the annotated 
DMRs (AA (n = 31 T, 27 NT) and EA (n = 32 T and 32 
NT)) to identify potential transcription factors or co-
regulators of gene expression. LISA-derived prediction 
showed EZH2 enrichment in hypermethylated regions 
independently of race (Fig. 1E, F). The PRC2 complex pri-
marily methylates histone 3 lysine 27 (H3K27) to repress 
gene transcription [44]. These observations suggest that 
the PRC2 complex is present in hypermethylated regions 
of prostate tumors and can potentially suppress gene 
transcription. HypoDMRs were enriched in the olfac-
tory and ribosomal pathways in a race-independent 
manner (Fig.  1C, D). LISA-derived prediction showed 
enrichment of chromatin-remodeling enzymes, includ-
ing CTCF and KMT2A, at hypoDMRs of prostate tumors 
from AA men but not EA men (Fig. 1E, F). HypoDMRs in 
prostate tumors of EA men were enriched for previously 
known prostate cancer-associated transcription fac-
tors, including FOXA1 and AR [45]. These data support 
the conclusion that there are interactions between DNA 
and known prostate cancer-associated transcription fac-
tors and chromatin-remodeling enzymes. These interac-
tions may depend on the methylation status of specific 
genomic regions and are distinct in prostate cancer from 
AA and EA men.

We also determined race- and tumor-specific changes 
in DNA methylation using a two-way ANOVA, to 
account for both race and source tissue (tumor or adja-
cent non-tumor). This statistical test first determines the 
methylation difference at each DMR between tumors 
and adjacent non-tumors within each race, followed 
by comparisons between AA and EA men (EA(T-NT)-
AA(T-NT)). This allowed us to understand the magni-
tude of DNA methylation change in prostate tumors in 
relation to adjacent non-tumor tissue, in the context of 
race. A single DMR annotated to EIF1AY, located on the 
Y-chromosome, had a greater magnitude of increased 
methylation in prostate tumors of AA men (P < 0.05, 
represented as a dot below the second dashed line, 
Additional File 2, Fig. S3A). This was not surprising as 
the number of DMRs was much lower in AA men. The 
positive value resulting from differences in all the other 
DMRs suggested that prostate tumors from AA men have 
decreased methylation at specific regions of DNA com-
pared to EA men (gray rectangles Additional File 2, Fig. 
S2B). These DMRs were annotated to genes crucial for 

the development of the nervous system, including ZIC1 
and EBP41L3 (Additional File 2, Fig. S3A). In agreement 
with our earlier observations, LISA-derived prediction 
showed that decreased DNA methylation in prostate 
cancer was associated with distinct chromatin remod-
eling enzymes, including BACH1 and PCGF6, in AA men 
(Additional File 2, Fig. S3B). Our observations suggest 
that altered DNA methylation, specifically hypometh-
ylated regions, is associated with distinct chromatin-
remodeling enzymes in AA men compared to EA men.

Differentially methylated regions in AR target genes 
and the GATA family of transcription factors are associated 
with gene expression in a race‑specific manner
We investigated if differential DNA methylation cor-
relates with race-specific changes in gene expression 
in prostate cancer. We calculated correlation estimates 
between DMRs and mRNA expression across the entire 
transcriptome in samples analyzed by both methyla-
tion arrays and bulk-RNA sequencing (AA: T = 31, NT 
= 27, EA: T = 32, N = 31). This allowed us to calculate 
and compare correlation estimates (ρ) between DNA 
methylation and gene expression within matched tumor 
and adjacent non-tumor tissue. We observed positive 
and negative correlations between DNA methylation 
and gene expression in tumor versus non-tumor tissues 
(Additional File 2, Figs. S4A–B, all correlations are listed 
in Additional File 4). Positive correlation between DNA 
methylation and gene expression has been established in 
other models [46]. To our knowledge, our study is the first 
to report an inverse correlation between Alpha-Methyl-
acyl-CoA Racemase (AMACR ) expression and methyla-
tion of AMACR -associated DMRs in prostate cancer and 
adjacent non-tumor tissues (AA: correlation estimate for 
tumor: − 0.62, P-value: < 0.001; EA: correlation estimate 
for tumor: − 0.68, P-value: < 0.001; Additional File 2, 
Figs. S4C–D; Additional File 4). AMACR is a verified bio-
marker overexpressed in prostate cancer [47]. Compared 
to adjacent non-tumor tissue, AMACR  is overexpressed 
in prostate tumors from AA men (log2fold change: 1.85, 
P < 0.001) and EA men (log2fold change: 2.70, P < 0.001) 
(Additional File 5). Our observations suggest a potential 
mechanistic link between DNA hypomethylation and 
AMACR  gene expression in prostate cancer.

To identify race-specific associations, we focused on 
gene expression and DMR correlations that are distinct 
between AA and EA men. In prostate cancer from AA 
men, genes including known AR target genes TRIM63, 
ATP2A1, and ARHGAP28 [48–50], showed a signifi-
cant inverse correlation between gene expression and 
DNA methylation (Additional File 4). Additionally, we 
observed race-specific correlations between DNA meth-
ylation and gene expression of GATA family members 
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(Fig.  2A–E, Additional File 6). GATA2 and GATA3 are 
known AR co-regulators in prostate cancer but any race-
specific association is unknown [51]. There is also limited 
knowledge about the role of the other members of the 
GATA family in prostate cancer [52, 53]. Therefore, we 
investigated the association between DNA methylation 
and gene expression of all GATA family members.

Regardless of race, GATA3 was significantly down-
regulated in prostate tumors compared to adjacent non-
tumor tissues (Additional File 2, Fig. S4E, P < 0.001). 
GATA4 was the only member of the family that showed 
a positive correlation between gene expression and DNA 
methylation at specific loci in both AA and EA patients 
and tumor and adjacent non-tumor tissues (Fig. 2C, left 
panel: right top quadrant, Additional File 6). Conversely, 
GATA5 and GATA6 gene expression were negatively cor-
related with DNA methylation at specific loci in prostate 
tumors and adjacent non-tumor tissues regardless of race 
(Fig.  2D–E, left panel: left bottom quadrant, Additional 
File 6).

We identified race-specific differences. There was a 
significant negative correlation between DNA meth-
ylation of the GATA5 transcription start site and RNA 
expression in tumor tissue of EA men (Fig.  2D, middle 
and right panels: left top quadrant, Additional File 6). 
GATA2 expression was negatively correlated with DNA 
methylation at specific loci in adjacent non-tumor tissues 
of AA men, suggesting that DNA methylation can regu-
late GATA2 expression (Fig.  2A, left panel: left bottom 
quadrant, dots represent correlation coefficient estimate 
for individual clinical samples, Additional File 6). GATA2 
expression inversely correlated with DNA methylation 
at the multiple CG sites in the 5′-UTR region (P-value: 
< 0.001) in adjacent non-tumor tissues from AA men 
(Fig. 2A, middle and right panels: left bottom quadrant, 
Additional File 6). This suggests that DNA methylation 
at the 5′-UTR can inhibit transcription and therefore 
reduce GATA2 gene expression. GATA3 expression nega-
tively correlated with DNA methylation at specific loci in 
a subset of prostate tumors from AA men (Fig.  2B, left 
panel: left top quadrant, Additional File 6). Significant 
correlations of gene expression with DNA methylation 
were observed explicitly at multiple CG sites at the tran-
scription start site (P < 0.01) in prostate tumors from AA 
men (Fig. 2B, middle and right panels: left top quadrant, 

Additional File 6). Additionally, we observed an inverse 
correlation between DNA methylation and gene expres-
sion in annotated GATA5 transcription start sites in adja-
cent non-tumor tissues from AA men (Fig.  2D, middle 
and right panels: left bottom quadrant, Additional File 
6). Compared to adjacent non-tumor tissues, GATA4 
was significantly upregulated in prostate tumors from 
AA men (Additional File 2, Fig, S3E, P < 0.05). GATA5 
expression was significantly downregulated in adjacent 
non-tumor tissues from AA men compared to EA men 
(Additional File 2, Fig. S4E). GATA5 was further down-
regulated in prostate tumors compared to adjacent non-
tumor tissues of AA men (Additional File 2, Fig. S4E, P 
< 0.001). Our findings indicate that epigenetic regulation 
is an important process, which may impact race-specific 
expression of genes associated with AR signaling in pros-
tate cancer and adjacent non-tumor tissues.

Patient‑specific prostate cancer Boolean network 
modeling reveals race‑specific differences in TGF‑β, IDH1, 
and cell cycle pathways
To understand whether differential expression of AR-
associated genes (TRIM63, ATP2A1, ARHGAP28, and 
GATA ) indicates dysregulation of AR signaling in gen-
eral, we first determined AR protein expression in tissue 
microarrays (TMAs) consisting of prostate tumor tissues 
and adjacent non-tumor tissues from AA (T: 107, NT: 
107) and EA men (T: 133, NT: 133). Given that nuclear 
AR protein drives transcriptional activity that is impor-
tant for prostate cancer proliferation and survival [54], 
we assessed nuclear AR expression. We found race- and 
tissue-specific correlations between the percent of AR-
positive nuclei and clinical parameters, including Glea-
son score and progression-free survival (Additional File 
1, Table  S3–4; Additional File 2, Figs. S5A–B). The per-
cent of AR-positive nuclei was higher in adjacent non-
tumor but not tumor tissues from AA men compared to 
EA men (78.20% vs. 73.28%, P < 0.01) (Additional File 1, 
Table S4; Additional File 2, Figs. S5C–D).

20 samples from AA prostate cancer patients that 
are present on the TMAs were also analyzed by RNA 
sequencing. We used these overlapping samples to deter-
mine whether AR transcriptional activity is altered. 
We utilized Gene Set Variation Analysis (GSVA) [42] 
to derive expression scores for the canonical AR gene 

(See figure on next page.)
Fig. 2 GATA transcription factor DNA methylation and gene expression are associated in a race‑specific manner. Each dot represents ρ, correlation 
coefficient, between methylation and gene expression. Top left quadrant represents a negative correlation between DNA methylation and RNA 
expression in prostate tumors compared to adjacent non‑tumor tissues; i.e., a negative correlation is only found in prostate tumors. Left panels: 
represent correlation in all prostate tumors. Purple dots represent AA men, and dark cyan dots represent EA men. Middle panels: represent 
annotated CpG sites in AA men. Right panels: represent annotated CpG in EA men
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Fig. 2 (See legend on previous page.)
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targets KLK2, KLK3, NKX3.1, and TMPRSS2 (measured 
by RNA sequencing) [55, 56]. GSVA scores can be used 
to determine pathway activity, and in this case AR tran-
scriptional activity, which provides an advantage over 
single gene measurements. These GSVA scores indicated 
AR transcriptional activity is significantly higher in pros-
tate tumors than in adjacent non-tumor tissues (P < 0.05) 
(Additional File 2, Fig. S5E). To add rigor to our study, we 
expanded our AR activity analysis to the TCGA prostate 
cancer dataset (EA: n = 270 T, 36 NT; AA: n = 43 T, 6 
NT). The results recapitulate findings from the Roswell 
Park cohort, where we observed an increase in AR tran-
scriptional activity in tumor versus non-tumor in EA 
but not AA men (Additional File 2, Fig. S5F). To further 
investigate race-specific differences in AR activity, we 
performed GSVA for a 27-gene AR activity score devel-
oped by Hieronymus, H. et  al. [57] in both the Roswell 
Park and the TCGA cohorts. AR activity was significantly 
higher in tumor tissues compared to normal tissues 
from EA men (Additional File 2, Figs. S5G–H). These 
results show that AR transcriptional activity is signifi-
cantly higher in tumors from EA men despite AR protein 
expression being similar in prostate cancer and adjacent 
non-tumor tissues. Future studies analyzing AR protein 
expression and AR transcriptional activity from tumor 
tissues can provide insights into these observations in EA 
men. These observations suggest that determining AR 
protein and target gene expression may reflect AR activ-
ity more accurately.

Targeting AR to alter transcriptional signaling and 
block disease progression is a common therapeutic strat-
egy in prostate cancer [58]. It is unknown whether AR 
targeting in the clinic results in downstream biological 
consequences that are different for AA and EA prostate 
cancer patients. To address this question, we adapted an 
existing prostate cancer Boolean network [15] to analyze 
a subset of clinical samples from Roswell Park (N = 15, 
AA: 7, EA: 8; a subset of samples listed in Additional File 
1, Table S1). These 15 samples had the three data types 
(transcriptomics, mutation, and copy number variation) 
required to generate patient-specific Boolean networks. 
Men with prostate cancer receive AR-targeted therapies 
for prolonged periods, usually until the disease relapses 
[59]. Therefore, we perturbed all patient-specific net-
works to mimic prolonged AR-targeted therapy for each 
patient and compared the percent change in AUC of all 
nodes before and after perturbation between races, in 
which AUC represents the temporal activity of a node 
over an arbitrary unit of time. Simulated AR inhibition 
resulted in significant differences in the changes in AUC 
of nodes involved in the TGF-β, IDH1, AR, and cell cycle 
pathways in prostate tumors between AA and EA men 
(Additional File 2, Figs. S6A–B). A significantly greater 

increase in AUC profiles was observed for IDH1 (34.2 vs. 
9.6, P < 0.05, Fig.  3A, C) and SMAD (48.5 vs. 15.3, P < 
0.05, Additional File 2, Fig. S6A, C, left panels) after AR 
inhibition in prostate tumors from AA men compared 
to EA men. Conversely, a significantly greater decrease 
in AUC profiles was observed for AR_ERG (− 97.4 vs. − 
93.4, P < 0.05) and ZBTB17 (− 95.8 vs. − 78.5, P < 0.05) 
in AA men (Additional File 1, Table S5). The changes in 
the AUC of all nodes in this prostate cancer network are 
represented in Additional File 2, Fig. S6A. These results 
highlight that there are racial differences in the changes 
in certain gene activities after prolonged AR inhibition. 
We validated our findings by simulating AR inhibition 
with The Cancer Genome Atlas (TCGA) [60] cohort. 
These simulations confirmed race-specific differences in 
TGF-β, IDH1, and cell cycle pathways (P < 0.05, Fig. 3B, 
D; Additional File 2, Fig. S6B, D right panels; Additional 
File 1, Table  S5). Overall, our simulations suggest that 
prolonged AR inhibition can result in changes in gene 
activity that is significantly different between prostate 
tumors from AA men and EA men. These observations 
have real-world implications and need to be investigated 
in the future since AR inhibition is routinely used to treat 
advanced prostate cancer.

Metabolic, oncogenic, and immune pathways are 
dysregulated in prostate tumors from AA men
Our prostate cancer Boolean network analyses are lim-
ited to a subset of curated genes [15]. Broadening this 
analysis to encompass all gene expression changes 
allowed us to pinpoint other race-specific differences 
in prostate cancer transcriptomes. For this purpose, we 
compared mRNA levels, obtained from RNA sequenc-
ing, between prostate tumors of AA and EA men (AA: T 
= 31 and EA: T = 32, demographics in Additional File 1, 
Table S2, samples that were also analyzed by DNA meth-
ylation). Genes in peptidase activity pathways, includ-
ing SEMG1 and SEMG2, were significantly upregulated 
in prostate cancer from AA men (Fig.  4A, left panel, 
Additional File 5). To identify race-specific pathway 
alterations, we performed GSEA using the whole tran-
scriptome data. GSEA revealed peptidase activity, repro-
ductive processes, and microtubule-based movement 
were overrepresented in prostate tumors from AA men 
(Fig.  4A, middle panel). Additionally, immune-based 
pathways that include genes crucial for the proliferation 
of lymphoid and T-cell progenitors, such as CD40 and 
CD226, were enriched in prostate tumors from AA men 
(Fig.  4A, middle panel). The results from the Roswell 
Park cohort are further supported by the analysis we con-
ducted on the larger TCGA cohort (n = 43 AA; n = 270 
EA), which confirmed enrichment of these pathways in 
AA prostate tumors (Additional File 2, Fig. S7A).
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Gene expression panels based on measuring expression 
of multiple genes on one panel, such as Decipher [61], 
can be utilized to derive an overall score for calculating 
the risk of prostate cancer progression. Therefore, we 
looked at gene expression in each individual pathway as 
a potential candidate for ‘gene marker panels’ and calcu-
lated GSVA scores. GSVA estimates variation of a gene 
set and calculates sample-wise (in this case for tumors 
from individual patients) scores as a function of genes 
within the given GSEA pathway [42]. While GSEA reveals 
the enriched pathway, GSVA can be thought of as “activ-
ity score” for the genes included in the enriched path-
ways. Therefore, we calculated GSVA scores for the top 
pathways identified using GSEA. Using the GSVA scores 
we determined hazard ratios (HR) based on progression-
free survival. Positive HR scores indicate a higher risk of 
disease progression, and negative HR scores indicate a 
reduced risk of disease progression. Higher GSVA scores 
in the microtubule-based movement pathway correlated 
with positive HR scores and therefore higher risk of 
disease progression in both AA and EA men (P < 0.05) 

(Fig.  4A, right panel; Additional File 2, Fig. S7B; Addi-
tional File 1, Table  S6). The microtubule-based move-
ment pathway included multiple members of the kinesin 
family that are known to promote disease progression in 
other cancers [62]. These results lay the groundwork to 
further develop and test gene expression of the microtu-
bule-based movement pathway in primary prostate can-
cer and its association with disease progression.

AA men are more frequently diagnosed with early-
onset prostate cancer (< 55 years of age) than EA men 
[63]. To determine race-specific gene expression changes 
associated with early-onset disease, we identified differ-
entially expressed genes (DEGs) in prostate cancer from 
< 55 years and ≥ 55 years AA and EA men (Additional 
File 2, Fig. S7C). Components of the ribonucleopro-
tein (RN7SK genes) and Y RNA, part of long noncoding 
RNAs, were significantly upregulated in prostate cancer 
from AA men < 55 years compared to EA men < 55 years 
(Fig.  4B, left panel). GSEA revealed an overrepresenta-
tion of genes that include enzymes involved in amino-
acid metabolism, oxidation of organic compounds, and 

Fig. 3 IDH1 gene activities after AR knockout simulations show significant race‑specific differences in prostate tumors. AUC before inhibition (WT), 
AUC after AR inhibition (KO), and the percent change in AUC between the two conditions in the Nutrient pathway are represented in the heatmap. 
A Roswell Park (RP) clinical samples, B TCGA clinical samples. C–D Percent change in IDH1 AUC (highlighted in red) was significantly different 
between prostate tumors from AA and EA men in both C RP and D TCGA clinical samples. Changes in AUC are represented by blue (down) and red 
(up)
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oxidative phosphorylation (Appierto response in Fig. 4B, 
middle panel). We again calculated HRs based on pro-
gression-free survival and associated GSVA scores to 
determine whether these pathways correlate with the risk 
of disease progression. Downregulation of the defense 
response to bacterium and immunoglobulin production 
pathways was associated with a significantly lower risk of 
disease progression only in younger AA men (P < 0.05, 
Fig.  4B, right panel; Additional File 2, Fig. S7B). Over-
treatment of men with low-risk primary prostate cancer 
remains a significant issue in the clinic [64]. Therefore, 
our finding represents a potential path forward for iden-
tifying AA men with primary prostate cancer with lower 
risk of disease progression by measuring gene expression 
changes in the bacterium and immunoglobulin pathways.

To determine tumor-specific gene expression changes, 
we identified DEGs in prostate cancer from men < 
55 years of age and men ≥ 55 years of age by compar-
ing tumors and adjacent non-tumor tissue within each 
race. RN7SL5P, a long noncoding RNA, as well as other 
genes, was significantly upregulated in prostate cancer 
from AA men < 55 years compared to AA men ≥ 55 years 
(Fig.  4C, left panel; Additional File 5). GSEA revealed 
that early-onset prostate cancer in AA men was enriched 
for ribosomal proteins, translational, and metabolism-
associated pathways (Fig.  4C, middle panel; Additional 
File 1, Table S6). Lower GSVA scores of the TMPRSS2-
FUSION pathway were associated with a higher risk of 
disease progression only in AA men < 55 years of age but 
not in AA men ≥ 55 years of age (Fig.  4C, right panel; 

Fig. 4 Race comparisons reveal distinct gene enrichments that correlate with progression‑free survival. Left panels represent differentially 
expressed genes utilizing DESeq2, middle panels represent gene set enrichment analysis based on clusterProfiler, and right panels represent hazard 
ratios based on calculated GSVA scores. A Comparison of all prostate tumors from AA and EA men. B Race‑specific comparisons show distinct 
pathways in prostate tumors of AA and EA men younger than 55. C Comparisons show distinct pathways in prostate tumors of AA men younger 
than 55 compared to AA men ≥ 55. NES: Normalized Enrichment Score. An asterisk indicates a significant (p < 0.05) enrichment of the indicated 
pathway
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Additional File 2, Fig. S7B; Additional File 1, Table  S6). 
Interestingly, we did not identify any significant DEGs 
or pathways associated with disease recurrence upon 
comparisons of EA men < 55 years of age and EA men 
≥ 55 years of age (Additional File 2, Fig. S7D), suggesting 
that individual gene expression is similar between these 
two cohorts. Overall, we identify distinct transcriptional 
changes associated with the risk of disease progression 
in AA and EA men with prostate cancer. Future studies 
of these signaling pathways in preclinical models should 
pinpoint their mechanistic contributions to prostate can-
cer biology and disease progression.

Discussion
The significant underrepresentation of clinical samples 
from AA men [60, 65], including larger datasets like the 
TCGA, has contributed to the limited understanding 
of the mechanisms that influence disparities in prostate 
cancer biology. This exclusion is particularly evident for 
prostate cancer in AA men < 55 years old, who have an 
increased frequency of prostate cancer compared to EA 
men < 55 years old [63]. We start to address this sig-
nificant gap by studying prostate tissues from AA men 
with prostate cancer. Our study utilized tumors from 
self-identified patients treated at Roswell Park. We pre-
viously performed ancestry informative marker analyses 
for a subset of samples included in these analyses, which 
showed concordance between self-identification and 
ancestry [66].

Our results highlight gene expression changes that 
correlate with progression-free survival in AA men < 55 
years old. We characterized paired clinical samples of 
prostate cancer and adjacent non-tumor tissues through 
DNA methylation arrays, RNA sequencing, and immu-
nohistochemistry studies. Performing these analyses on 
paired tissues from the same individual allowed us to 
compare alterations to adjacent non-tumor tissues and 
dissect tumor-specific molecular changes. Furthermore, 
by analyzing adjacent non-tumor tissues, we were able 
to characterize molecular changes that exist in histologi-
cally normal prostate tissues.

Our Principal Component Analysis (PCA) plots and 
direct comparisons of DMRs show that DNA hypermeth-
ylation is similar between prostate cancer and adjacent 
non-tumor tissues from AA men. We discovered multiple 
DNA methylation changes in adjacent non-tumor tissues 
as well as prostate cancer tissues from AA men. These 
DNA methylation alterations correlate with gene expres-
sion in a race-specific manner. For example, DNA meth-
ylation at transcription start sites and 5′-UTR regions is 
distinctly associated with gene expression of the GATA 
family of transcription factors in adjacent non-tumor 
tissues of AA men. These changes in DNA methylation 

and gene expression happen before any obvious change 
in histology. This is a clinically significant finding for 
prostate cancer diagnoses, which currently relies on his-
tological examination of tissue biopsies. Biopsies that 
miss the transformed tissue and sample histologically 
normal-looking tissue can result in false negative diag-
nosis (~25%), especially in the context of rising PSA 
measurements [67]. False negatives can hinder timely 
diagnosis and follow-up care, which can have particularly 
harmful effects on younger AA men, who are diagnosed 
at a younger age and present with high-grade tumors 
[63]. Our observations of DNA methylation changes at 
specific loci in histologically normal-looking adjacent 
non-tumor tissues suggest that quantifying DNA meth-
ylation can be developed for diagnostic and prognostic 
purposes in prostate cancer. A previous study measur-
ing DNA methylation at GSTP1, APC, and RASSF1 loci 
in repeat prostate biopsies identified AA and EA men 
at risk of high-grade prostate cancer [68]. This test was 
performed with > 60% sensitivity and 70% specificity for 
men younger than 55 years [68]. Altogether, we provide 
a foundation and further rationale for developing and 
testing DNA methylation measurements at specific loci, 
including those in GATA  gene regions. Our observations 
also suggest a role for DNA methylation regulating gene 
expression of GATA family members that are known AR 
co-regulators [51], and therefore potentially involved in 
underlying disease biology.

DNA methylation can modify the composition of tran-
scription factors and chromatin remodeling enzymes at 
specific loci to regulate gene transcription and, therefore, 
expression [69]. Cofactors that regulate gene transcrip-
tion with DNA methylation have been previously identi-
fied in prostate cancer [14]. Whether these associations 
occur in a race-specific manner was previously unknown. 
The results of this study indicate that DNA methylation 
cooperates with distinct transcriptional coregulators in 
prostate cancer from AA men compared to EA men. We 
show that hypomethylated regions are enriched in tran-
scriptional regulators, including CTCF, only in prostate 
tumors of AA men. CTCF loss leads to hypermethylation 
at its binding sites and is associated with decreased gene 
expression in prostate epithelial cells [70]. This, along 
with our findings, suggests the enrichment of CTCF in 
DNA hypomethylated regions can potentially regulate 
gene expression specifically in prostate tumors of AA 
men and will be investigated in the future.

We find that gene expression of several androgen recep-
tor (AR) target genes, including TRIM63, are inversely 
associated with DNA methylation only in prostate cancer 
from AA men. Therefore, we used a unique systems phar-
macology approach to investigate the broad effects of 
AR-mediated gene expression changes on prostate cancer 
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from AA and EA men. The patient-specific prostate can-
cer Boolean networks allowed us to closely mimic clinical 
disease with multiple genetic alterations and copy num-
ber alterations. We simulated transcriptional alterations 
that arise from prolonged AR inhibition in prostate can-
cer and compared these alterations between AA and EA 
men. Our simulation using primary therapy naïve tumors 
suggests that prolonged AR inhibition in AA men is more 
likely to result in therapy-resistant phenotypes associated 
with TGF-β (SMAD), IDH1, and cell cycle pathways [71–
73]. These observations are clinically significant for AA 
men, who are more frequently diagnosed with prostate 
cancer at a younger age (< 55 years) than EA men [6, 63], 
and are more likely to remain on a life-long AR-targeted 
therapy. Our observations provide a rationale to measure 
gene expression changes in TGF-β, IDH1, and cell cycle 
pathways, in prostate cancer of AA and EA men treated 
with AR inhibitors. Measuring gene expression changes 
upon AR-targeted therapy in AA and EA men can pro-
vide insights into race-specific mechanisms and perhaps 
markers of therapy response and emerging resistance.

Prostate cancer from EA men often contains ERG 
fusion/ETS family fusions and SPINK1 mutations [74, 
75], which are not as commonly found in prostate can-
cer from AA men. Measuring gene expression changes 
in prostate cancer from AA men represents an impor-
tant tool for the clinical management of prostate cancer 
as they typically lack the currently known genetic aber-
rations. Genomic classification that is based on gene 
expression measured in radical prostatectomy speci-
mens, including Decipher, is currently utilized as an 
additional tool for prognostic purposes [61]. Our study 
highlights gene expression changes occurring in AA 
men as well as AA men < 55 years of age. We find that 
upregulation of TMPRSS2_ERG-associated gene signa-
tures was associated with a shorter time to progression-
free survival in AA men < 55 years of age compared to 
AA men ≥ 55 years of age. We also show that downreg-
ulation of immune-related signaling is associated with 
longer progression-free survival in AA men < 55 years of 
age compared to EA men < 55 years of men. Therefore, 
the current study can lead to the development of newer 
assays in addition to existing tools that are specifically 
designed to improve the clinical management of prostate 
cancer in AA men.

Conclusions
In conclusion, our study reveals significant differences in 
the molecular landscape of prostate cancer between Afri-
can American (AA) and European American (EA) men, 
especially in those under 55 years of age. We observe 
distinct DNA methylation patterns at specific loci, sug-
gesting unique epigenetic regulatory mechanisms at play 

in prostate tumors from AA men tumors compared to 
EA men. Moreover, the composition of gene transcrip-
tion coregulators differs between the two racial groups, 
indicating potential divergent pathways of disease pro-
gression. Importantly, our study identifies race-specific 
gene expression profiles, particularly in genes associated 
with androgen receptor signaling, immune response, 
and pathways implicated in therapy resistance. Through 
patient-specific prostate cancer Boolean network mode-
ling, we uncover race-specific transcriptional alterations, 
offering insights into potential mechanisms of therapy 
resistance in AA men. These findings underscore the 
importance of considering racial disparities in prostate 
cancer biology and highlight the need for personalized 
approaches in diagnosis, prognosis, and treatment. Fur-
ther validation and exploration of these molecular differ-
ences hold promise for improving clinical management 
and outcomes, particularly for AA men, in the context of 
prostate cancer.
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