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Abstract 

Background  Metabolic pathways are related to physiological functions and disease states and are influenced 
by genetic variation and environmental factors. Hispanics/Latino individuals have ancestry-derived genomic regions 
(local ancestry) from their recent admixture that have been less characterized for associations with metabolite abun-
dance and disease risk.

Methods  We performed admixture mapping of 640 circulating metabolites in 3887 Hispanic/Latino individuals 
from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Metabolites were quantified in fasting 
serum through non-targeted mass spectrometry (MS) analysis using ultra-performance liquid chromatography-MS/
MS. Replication was performed in 1856 nonoverlapping HCHS/SOL participants with metabolomic data.

Results  By leveraging local ancestry, this study identified significant ancestry-enriched associations for 78 circulating 
metabolites at 484 independent regions, including 116 novel metabolite-genomic region associations that replicated 
in an independent sample. Among the main findings, we identified Native American enriched genomic regions 
at chromosomes 11 and 15, mapping to FADS1/FADS2 and LIPC, respectively, associated with reduced long-chain pol-
yunsaturated fatty acid metabolites implicated in metabolic and inflammatory pathways. An African-derived genomic 
region at chromosome 2 was associated with N-acetylated amino acid metabolites. This region, mapped to ALMS1, 
is associated with chronic kidney disease, a disease that disproportionately burdens individuals of African descent.

Conclusions  Our findings provide important insights into differences in metabolite quantities related to ancestry 
in admixed populations including metabolites related to regulation of lipid polyunsaturated fatty acids and N-acety-
lated amino acids, which may have implications for common diseases in populations.
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Background
Circulating metabolites can provide insights into biologi-
cal processes in health and disease states [1]. Metabolites 
are end-products of metabolic cellular pathways regu-
lated by genetic variation and environmental factors such 
as diet, microbiome, and exposure to exogenous com-
pounds [2]. Studies have identified metabolite profiles for 
complex diseases including diabetes, obesity, and chronic 
kidney disease [3, 4]. The integration of genotypes and 
metabolites has provided insights into disease mecha-
nisms [5]. This research has been facilitated by the gener-
ation of high-throughput metabolomics in large datasets 
with genome-wide genotypes. Using genome-wide asso-
ciation approaches, several large-scale studies have iden-
tified rare and common genetic variants regulating blood 
metabolite levels in populations [6–8], and genes related 
to disease processes or drug targets [9].

However, the role of genetic ancestry in metabolite 
abundance and regulation is not well known. This ques-
tion is relevant to populations with recent admixture, 
such as Hispanic/Latino populations, who have a high 
burden of metabolic diseases. Hispanic/Latino popula-
tions were shaped by a long history of colonization and 
migration across America, which introduced high diver-
sity in both cultural aspects and genetic ancestry that can 
be observed in the Hispanic/Latino individuals currently 
in the USA [10, 11]. They carry genetic variants from 
three continental ancestries (West African, European, 
and Native American), and their genome is composed 
of varying segments of these different ancestral origins 
that can be mapped to local ancestries, i.e., each chro-
mosomal segment can be attributed to a source, local 
(segment-specific) ancestry. Genomic regions associated 
with a specific ancestry are expected to be enriched for 
ancestry-derived variants. There are several examples of 
ancestry-derived genetic variations that confer disease 
risk in populations, some of them driven by adaptation 
to environmental factors such as dietary restrictions or 
exposure to pathogens [12, 13]. For example, in Hispanic/
Latino individuals, Native American single nucleotide 
variants (SNVs) at the SLC16A11 gene are associated 
with risk of diabetes, and African ancestry SNVs in the 
APOL1 gene (related to plasmodium pathogen resist-
ance) are associated with chronic kidney disease [14, 15]. 
Therefore, research focusing on genetic ancestry could 
point to differences in metabolic regulation across pop-
ulations and provide insight into differences in disease 
risk.

We leveraged local ancestries for a comprehensive 
study of ancestry-derived genomic regions associ-
ated with circulating metabolites in admixed Hispanic/
Latino individuals. Recent admixture creates long-range 
blocks of linkage disequilibrium (admixture-LD) between 

genetic variants with differences in allele frequencies 
in the parental populations. The extent of admixture 
depends on the population admixture dynamics and 
time since admixture, and recombination rates. Causal 
variants should occur more frequently on chromosomal 
segments inherited from ancestral populations with 
higher disease burden. Therefore, associations of phe-
notypes with local ancestry regions are likely to improve 
the discovery of causal variants enriched in their popu-
lation of origin for both rare and common SNVs. We 
studied the genetic ancestry influences on 640 circulat-
ing metabolites in 3887 Hispanic/Latino individuals from 
the Hispanic Community Health Study/Study of Latinos 
(HCHS/SOL) using admixture mapping. This approach 
has been successfully applied in HCHS/SOL, with the 
identification of novel loci associated with blood pres-
sure [16], chronic kidney disease traits [17, 18], and pul-
monary traits [19, 20]. We used summary statistics from 
a published genome-wide association study (GWAS) of 
metabolites in the HCHS/SOL for fine-mapping loci and 
replicated novel findings in a non-overlapping HCHS/
SOL sample.

Methods
HCHS/SOL study design, population, and covariates
The HCHS/SOL is a multi-center community-based pro-
spective cohort study of 16,415 self-identified Hispanic/
Latino individuals aged 18–74 years who were recruited 
from households in predefined census-block groups in 
four US field centers (Chicago, Miami, the Bronx, and 
San Diego) between 2008 and 2011 [21]. The study used a 
two-stage area probability sample of households selected 
with stratification and oversampling incorporated at each 
stage to provide a broadly diverse sample of Hispanics/
Latinos and to ensure that the target age distribution was 
obtained [22]. Participants self-reported their country of 
origin as Central America (n = 1730), Cuba (n = 2348), 
Dominican Republic (n = 1460), Mexico (n = 6471), 
Puerto Rico (n = 2728), or South America (n = 1068). A 
baseline clinical examination included clinical, behavio-
ral, and sociodemographic assessments, and collection of 
fasting blood and spot urine samples. Estimated glomer-
ular filtration rate (eGFR) was calculated using the race-
free Chronic Kidney Disease Epidemiology Collaboration 
serum creatinine-based equation and used as a covariate 
in analyses.

Metabolomics data and processing
We used two non-overlapping datasets sampled from 
the overall HCHS/SOL study for discovery and replica-
tion. The discovery included a sample of 3972 partici-
pants which was randomly selected from HCHS/SOL 
for serum metabolomic profiling. Serum metabolites 
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(n = 1136; 782 with known and 354 unknown biochemi-
cal identities) were quantified in fasting serum through 
non-targeted mass spectrometry (MS) analysis using 
ultra-performance liquid chromatography (UPLC)-MS/
MS (DiscoveryHD4™ platform, Metabolon Inc, NC) 
[23]. Identification and classification of metabolites 
used a comparison of the ion features in the experimen-
tal samples to a reference library of chemical standard 
entries (e.g., molecular weight (m/z), preferred adducts, 
in-source fragments, and associated MS spectra) and 
known chemical entities. Peaks were quantified using 
area-under-the-curve. Raw area counts for each metab-
olite in each sample were normalized to correct for 
variation resulting from instrument inter-day tuning 
differences. To avoid batch effects, samples were ran-
domly allocated across the platform. Replicas were used 
to determine endogenous variability, with representative 
relative standard deviation of 10% across all biochemi-
cals. Metabolites were inverse normally transformed 
to approximate a normal distribution. We excluded 
unknown metabolites and metabolites with 25% or more 
missing data (amino acids, n = 12; carbohydrates, n = 2; 
cofactor a, n = 5; lipid, n = 23; nucleotide, n = 2; peptide, 
n = 3; xenobiotics, n = 95). For metabolites with less than 
25% missing data, missing values were imputed with the 
observed minimum value of the metabolite in the sam-
ple. A total of 640 metabolites were used in the analyses. 
We provided the Human Metabolome Database (HMDB) 
annotation when available and used LIPID MAPS to pro-
vide a RefMet-driven lipid standardized name [24].

The replication dataset included 2,330 HCHS/SOL par-
ticipants who were profiled using the DiscoveryHD4™ 
platform (Metabolon Inc, NC) using the same proto-
cols described for the discovery dataset. After remov-
ing individuals overlapping with the discovery dataset, 
duplicates, and individuals without genotypes, 1856 non-
overlapping participants with the discovery sample were 
used for replication. We excluded metabolites with > 25% 
missing values across individuals and imputed miss-
ing values for the remaining metabolites using the same 
methods as described in the discovery dataset.

Genotyping and local ancestry
Participants were genotyped at over 2.5 million SNVs 
using a custom-built Illumina array. Details on genotyp-
ing, quality control proceedings, and imputation have 
been published [25–27]. Local ancestry references were 
estimated from 195 West African, 527 European, and 
63 Native American samples from the Human Genome 
Diversity Project [28] and 1000 Genomes Project [29]. 
BEAGLE (v.4) was employed for phasing and imputa-
tion of sporadic missing genotypes in the HCHS/SOL 
and reference-panel datasets [30]. Local ancestry calls at 

each locus were estimated using RFMix 1.5.4 [31], with 
the PopPhased option and a minimum node size of 5, 
as recommended in the documentation, and previously 
described [27]. The estimation of kinship coefficients, 
principal components (PCs) of ancestry, and genetic 
analysis groups are published [25].

Statistical analyses
Descriptive statistics for continuous data were presented 
as the mean ± standard deviation (SD) or median with 
interquartile range, and categorical variables as number 
and percentage. The HCHS/SOL study was developed 
under a complex sampling design [22]. To account for 
the correlation structure of the data, all regression mod-
els included three random effects: the pairwise kinship 
coefficients, household, and census block group (the geo-
graphic cluster of the households) to represent the cor-
relation between participants to genetic relatedness and 
shared environmental effects.

Admixture mapping
Admixture mapping analyses for each metabolite were 
performed using a linear mixed model framework imple-
mented in the GENESIS R package [32] in which Afri-
can, European, and Native American ancestries were 
tested simultaneously in a joint admixture mapping 
analysis [18]. Briefly, we first fit the models under the null 
hypothesis of no genetic ancestry effect while including 
multiple random (pairwise kinship coefficients, house-
hold, and census block group) and fixed (age, sex, eGFR, 
recruitment center, genetic analysis group, and the first 
five PCs) effects. We then used the null models to run 
the joint test for associations between ancestries at each 
locus and metabolites using a Wald test. Here, local 
ancestry is defined as the locus-specific ancestry allelic 
dosages (0, 1, or 2 copies of African, European, or Native 
American alleles, estimated from the genotype data) at 
each genomic interval. After identifying associations 
using the joint test, follow-up admixture mapping analy-
ses then tested each ancestry against the others to deter-
mine the ancestry driving the signal at each associated 
local ancestry region. We tested a total of 15,500 local 
ancestry regions. We applied a significance threshold of 
5.04 × 10−9, which controls for a family-wise error rate at 
a level of 0.05 for multiple testing for the 640 metabolites 
and 15,500 local ancestry regions. The effect sizes of the 
associated loci were estimated using the allelic dosage of 
the ancestry driving the signal.

In a sensitivity analysis, we ran the admixture map-
ping models adjusting for global ancestry, defined as 
ancestry proportions estimated by averaging the local 
ancestry calls across the genome, instead of using the 
first five PCs, to ensure that our significant local ancestry 
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associations were not spurious. We obtained similar 
results adjusting by either PC or global ancestry propor-
tions, and although 18 local ancestry regions were no 
longer significant, p-values had small changes. The sen-
sitivity analysis results indicated that the PCs accurately 
adjusted for population structure and increased our con-
fidence that observed associations were not spurious.

Conditional analysis of admixture mapping regions
RFMix infers local ancestry in a series of intervals, 
referred to here as local ancestry regions. Inferred local 
ancestry is constant within each region. However, local 
ancestry is not independent across neighboring regions 
because local ancestry tracts have average lengths of 
more than six centiMorgans in Hispanic individuals due 
to the onset of admixture occurring within the past 15 
generations. To determine whether significant results 
from local ancestry regions located close in proximity 
were independent, we performed a conditional admix-
ture mapping analysis on local ancestry regions located 
within ten centiMorgans of the most significant region 
associated with a metabolite. The allelic dosage of the 
ancestry driving the association signal was included as a 
covariate. We conservatively chose a significance thresh-
old of 5 × 10−5 for this analysis and kept only ancestry-
derived regions that remained significantly associated 
with a metabolite after conditioning.

Overlap of local ancestry regions with genetic variants 
identified in GWAS
We used the recently published GWAS of metabolites to 
identify the overlap of significant local ancestry regions 
with genetic variants significant in GWAS [33]. Local 
ancestry regions without any significant GWAS variants 
were considered novel associations discovered through 
admixture mapping.

Conditional analyses using GWAS summary statistics 
of metabolites in HCHS/SOL for fine‑mapping
We used existing GWAS summary statistics from the 
HCHS/SOL cohort to fine-map potential variants 
within identified ancestry-specific regions associated 
with metabolites. The methods for the GWAS were 
described previously [8]. We extracted GWAS results 
for all SNVs located within significant local ancestry 
regions. We then used the conditional and joint asso-
ciation analysis (COJO) application from the software 
package Genome-wide Complex Trait Analysis (GCTA 
v1.93.2) to determine which SNVs (separately for each 
local ancestry region) were independent. The number of 
copies of the reference allele for each independent SNV 
was included as a covariate in a conditional admixture 
mapping analysis for its corresponding region [34]. The 

reference population for calculating linkage disequilib-
rium was a sample of 5879 unrelated individuals from the 
HCHS/SOL study. Only GWAS SNVs from COJO mod-
eling with p-values lower than 5 × 10−8 were included as 
covariates in admixture mapping conditional analyses. 
We considered a SNV to explain the admixture mapping 
association with a metabolite if the admixture mapping 
joint p-value increased to greater than 5 × 10−5 when 
conditioning on the SNV. For local ancestry regions with 
multiple COJO SNVs, if none of the COJO variants indi-
vidually changed the admixture mapping joint p-value to 
more than 5 × 10−5, all of the COJO SNVs for that region 
were tested together in a single admixture mapping con-
ditional model.

Genotype annotation
We used several tools to annotate SNVs identified in con-
ditional analysis for their functional impact including 
ANNOVAR [35] and the Ensembl (http://​uswest.​ensem​
bl.​org/​index.​html) and refGene annotation databases 
(https://​varia​nttoo​ls.​sourc​eforge.​net/​Annot​ation/​RefGe​
ne). For non-coding variants, we used resources to assess 
evidence for enrichment in regulatory elements, includ-
ing enhancers, transcription factor binding sites, and his-
tone modification in tissues using a range of approaches 
implemented in FORGE2 [36].

Replication of admixture mapping findings
We performed admixture mapping in an independent 
sample from HCHS/SOL using the same statistical meth-
ods and covariates used in the discovery analysis. The 
threshold for significance was based on Bonferroni cor-
rection for 404 association tests of 64 metabolites with 
associations spread across 169 genomic regions. In addi-
tion, we compared the direction of effects (beta coeffi-
cients) and the ancestry driving the association between 
the discovery and replication samples.

Results
Admixture mapping of metabolites
We performed admixture mapping of metabolites in 3887 
HCHS/SOL Hispanic/Latino individuals. The mean age 
was 45.9 years old, 57% were women, and the mean eGFR 
was 96.4  ml/min/1.73 m2 (Additional File 1: Table  S1). 
Participants lived in the USA and reported originated 
from the Mainland (Central and South America, and 
Mexico) and the Caribbean (Cuba, Dominican Republic, 
and Puerto Rico), and they had varying African, Euro-
pean, and Native American global ancestry proportions, 
as shown in Additional File 2: Fig. S1 and previously 
described [25]. Note that individuals from the Mainland 
had a higher proportion of Native American ancestry, 

http://uswest.ensembl.org/index.html
http://uswest.ensembl.org/index.html
https://varianttools.sourceforge.net/Annotation/RefGene
https://varianttools.sourceforge.net/Annotation/RefGene
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while those from the Caribbean had a higher proportion 
of African ancestry.

The overall study design and approach for analyses are 
shown in Fig.  1. Associations were performed among 
640 metabolites with known biochemical identities and 
15,500 local ancestry regions using a joint admixture 
mapping linear mixed model. A total of 651 local ances-
try regions within twelve chromosomes were signifi-
cantly associated with at least one metabolite, and 78 of 
the 640 tested metabolites were associated with at least 
one significant local ancestry region (Additional File 1: 
Table  S2). Summarizing associations while allowing for 
multiple metabolite associations per region, our study 
identified a total of 2127 significant metabolite-local 
ancestry pair results (Additional File 1: Table S3).

Local ancestry independent associations
Given that several metabolites were frequently associ-
ated with multiple neighboring local ancestry regions, we 
tested associations conditioning on local ancestry regions 
of the most significant region, which reduced the num-
ber of significant local ancestry regions from 2127 to 484 
independent regions (Additional File 3: Extended Data 
Table  S1). The remaining local ancestry regions were 
removed from future analyses.

Ancestry‑driven regions for metabolites
We next tested the ancestry driving the association in 
each independent local ancestry region. The most sig-
nificant ancestry associations were attributed to Native 
American ancestry (Table 1). There was notable cluster-
ing of association regions by ancestry where multiple 
nearby independent regions across metabolites were 
attributed to the same ancestry (Fig. 2). On several chro-
mosomes, there was a concordant association between 
the driving ancestry and the direction of the associa-
tion, i.e., one ancestry was associated with increased 
metabolite abundance while the other was associated 
with reduced metabolite abundance (Additional File 2: 
Fig. S2). A large number of metabolites were associated 
with two local ancestry regions located on chromosomes 
2 and 11. Of the metabolites, 97.4% of those associated 
with regions on chromosome 11 were lipids, and 84.6% 
of those associated with chromosome 2 were amino acids 
(Table  1). On chromosome 2, 91% of the associations 
were attributed to African local ancestry, with 89% of 
those associations being related to increased metabolite 

abundance. Similarly, on chromosome 11, all but one of 
the 264 local ancestry region associations were driven by 
Native American ancestry, with 86% of these associations 
being related to low metabolite quantities (Table 1).

Fine‑mapping results using GWAS variants on genomic 
regions overlapping with GWAS findings
Among 484 metabolite-genomic associations, 252 (51%) 
of the local ancestry regions overlapped with a significant 
variant reported in GWAS, and 232 without overlap were 
considered novel. We used GWAS summary statistics for 
metabolites in HCHS/SOL from a recent publication [8] 
to test if genome-wide significant SNVs explained our 
admixture mapping findings. Using a stepwise selection 
model implemented in GCTA-COJO, we first identified 
all independent associated SNVs within the boundaries 
of each local ancestry region. These analyses identified 
361 SNVs in the 252 local ancestry regions, which were 
then used in admixture mapping conditional analyses.

Among these SNVs, 46 explained the admixture asso-
ciation in 42 local ancestry regions (Table  2), and two 
examples are shown in Fig. 3. The significance of a locus 
was explained in a further two local ancestry regions 
when conditioning on all COJO-selected SNVs in a 
region (Additional File 1: Table S4).

Interestingly, 31 significant local ancestry associations 
with metabolites were driven by only four local ancestry 
regions on chromosomes 2, 11, 15, and 16. Often, the 
same SNV explained the association with local ancestry 
for multiple metabolites (Additional File 1: Tables S5 to 
S8). With only one exception (alliin on chromosome 2), 
local ancestry associations explained by the same SNV 
in multiple metabolites had the same driving ancestry 
(Additional File 1: Table S6). For 208 metabolite and local 
ancestry region associations, the GWAS SNVs did not 
explain the admixture mapping association (Additional 
File 3: Extended Data Table S2), suggesting the presence 
of additional SNVs, likely rare and ancestry-enriched, 
contributing to the association in these regions.

Replication of admixture mapping findings
Among 64 metabolites available in the replication sam-
ple associated at 169 local ancestry regions, we identified 
significant associations for 116 of 190 novel metabolite-
genomic region associations and 187 of 211 known 
metabolite-region associations based on a Bonferroni 
adjusted p-value < 1 × 10−4 (Additional File 3: Extended 

Fig. 1  Study design and results. Hispanic/Latino populations are descendants from African, European, and Native American ancestral populations. 
Joint (all-ancestry) and ancestry-specific admixture mapping was performed using genetic, metabolic, and clinical data from 3887 Hispanic/Latino 
individuals. Conditional admixture mapping analysis determined individual local ancestry regions. These local ancestry regions were fine-mapped 
using GWAS results from a previous study. Annotation and clinical phenotypes were obtained for significant variants from conditional admixture 
mapping analysis

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Data Table S3). All metabolite-local ancestry associations 
had the same direction of effects for the ancestry-driving 
associations.

Disease relevance
We selected three local ancestry regions for more in-
depth analysis based on the large number of metabo-
lites associated and their relevance to disease traits 
(chromosomes 2, 11, and 15). Two genomic regions 

(chromosomes 11 and 15) were associated with lipids 
metabolites driven by Native American ancestry. The 
chromosome 11 locus included twelve lipid metabo-
lites and seven fine-mapped SNVs that were located at 
intronic regions of TMEM258, FADS1, and FADS2, 
and an intergenic SNV that was located near FTH1 
(Additional File 1: Table  S5). The chromosome 15 
had four associated lipids with a fine-mapped SNV 
located upstream to LIPC. Two lipid metabolites, 

Table 1  All admixture mapping results by ancestry and super pathway in independent local ancestry regions

Novel regions are local ancestry regions containing no significant SNVs from GWAS. The total number of significant local ancestry regions allows for duplicate 
significant regions across metabolites for the corresponding chromosome. Ancestry-specific analysis was performed on all metabolites significant in joint (all-
ancestries) admixture mapping. The driving ancestry was the ancestry group with the smallest p-value in ancestry-specific testing. Metabolic super pathways 
represent overall metabolite function in the body

Chr chromosome, LA local ancestry, NAM Native American driving ancestry, AFR African driving ancestry, EUR European driving ancestry

Significant LA regions Driving ancestry from ancestry-specific 
analysis

Super pathway

Chr Metabolites
n

Novel
n (%)

Total
n

NAM
n (%)

AFR
n (%)

EUR
n (%)

Lipids
n (%)

Amino acids
n (%)

Other
n (%)

2 13 41 (48) 85 - 78 (92) 7 (8) 1 (8) 11 (85) 1 (7)

4 1 - 1 - 1 (100) - 1 (100) - -

5 3 14 (74) 19 14 (74) 3 (16) 2 (11) - 2 (67) 1 (33)

6 1 - 1 1 (100) - - - - 1 (100)

8 4 8 (53) 15 1 (7) 5 (33) 9 (60) - 4 (100) -

9 1 - 1 - 1 (100) - - - 1 (100)

10 2 13 (65) 20 3 (15) - 17 (85) 1 (50) - 1 (50)

11 38 114 (70) 164 263 (99.6) 1 (0.4) - 37 (97) 1 (3) -

12 4 7 (58) 12 6 (50) 6 (50) - 2 (50) 2 (50) -

13 1 - 1 - 1 (100) - - - 1 (100)

15 8 15 (58) 26 14 (54) - 12 (46) 6 (75) 2 (25) -

16 4 20 (51) 39 6 (15) 33 (85) - - 3 (75) 1 (25)

Fig. 2  Location of associated independent local ancestry regions. Each vertical line represents an independent local ancestry region, colored 
by driving ancestry (the ancestry with the lowest p-value in ancestry-specific analyses). Regions located in relatively close proximity tend to have 
the same driving ancestry
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Table 2  COJO genetic variants that explain association between local ancestry regions and metabolites

COJO conditional and joint association analysis, Chr chromosome, LA ID local ancestry region ID, MAF minor allele frequency, AFR African, NAM Native American, EUR 
European, AM admixture mapping
a Genetic variant not significant in GWAS
b ncRNA
c Missense
c Upstream

Metabolite Chr LA ID COJO rsID Gene Gene function Driving 
ancestry 
(MAF)

AM joint
P-value

Conditional joint
P-value

Alliin 2 1579 rs10189885 ALMS1P1 Intronic EUR (—) 2.77 × 10−10 9.00 × 10−2

N-acetylkynurenine (2) 2 1579 rs10189885a ALMS1P1 Intronic AFR (—) 4.13 × 10−12 2.87 × 10−1

N2-acetyllysine 2 1579 rs12620091 ALMS1P1 Intronicb AFR (0.17) 2.87 × 10−17 1.19 × 10−3

N-acetylglutamine 2 1579 rs13431529 ALMS1P1 Intronicb AFR (0.6) 6.05 × 10−12 6.29 × 10−1

N2-acetyllysine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 2.87 × 10−17 3.47 × 10−3

N-acetylarginine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 4.85 × 10−25 3.75 × 10−3

N-acetylasparagine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 1.74 × 10−22 7.78 × 10−4

N-acetylglutamine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 6.05 × 10−12 1.42 × 10−2

N-acetylleucine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 2.07 × 10−19 1.52 × 10−4

N-acetyltyrosine 2 1579 rs1881244 ALMS1 Intronic AFR (0.85) 1.73 × 10−14 1.04 × 10−1

N-delta-acetylornithine 2 1579 rs28525015 ALMS1P1 Intronicb AFR (0.61) 6.15 × 10−24 3.17 × 10−4

N-acetylleucine 2 1579 rs28879089 ALMS1 Intronic AFR (—) 2.07 × 10−19 6.41 × 10−3

N-acetyltyrosine 2 1579 rs6546854 ALMS1 Intronic AFR (0.62) 1.73 × 10−14 1.86 × 10−1

2-Aminooctanoic acid 2 1581 rs72903325 ACTG2 Intronic AFR (0.35) 6.26 × 10−11 1.73 × 10−4

Androstenediol (3alpha, 17alpha) monosulfate (3) 4 3592 rs138040976 GNRHR Intronic AFR (—) 4.07 × 10−11 3.10 × 10−4

3-aminoisobutyrate 5 4386 rs191679549 AGXT2 Intronic NAM (—) 7.11 × 10−29 6.87 × 10−3

Betaine 5 4546 rs7736027 DMGDH Intronic AFR (0.66) 2.16 × 10−11 2.12 × 10−2

N-acetylglucosaminylasparagine 6 5848 rs2346120a UNC93A Intronic NAM (—) 3.20 × 10−9 1.67 × 10−2

S-1-pyrroline-5-carboxylate 8 7373 rs2242090 PYCR3 Exonicc EUR (0.52) 1.43 × 10−24 1.01 × 10−1

6-oxopiperidine-2-carboxylate 8 7376 rs11993782 PLEC Intronic AFR (0.83) 2.24 × 10−10 9.18 × 10−2

2′-O-methyluridine 9 7977 rs56023505 PHYHD1 UTR5 AFR (0.44) 3.35 × 10−10 4.56 × 10−3

Carnitine 10 8412 rs12415764 ARID5B Intergenic NAM (0.24) 2.32 × 10−11 5.37 × 10−5

N-methylpipecolate 10 8587 rs2147896 PYROXD2 Exonicc EUR (0.35) 2.02 × 10−46 1.39 × 10−3

MG 20:4 11 9120 rs102274 TMEM258 Intronic NAM (0.59) 2.15 × 10−37 5.72 × 10−3

PC 16:0/18:2 11 9120 rs11320420 MYRF Intronic NAM (—) 1.53 × 10−15 6.34 × 10−2

Stearidonic acid 11 9120 rs174556 FADS1 Intronic NAM (0.57) 1.30 × 10−19 3.60 × 10−4

1-arachidonoyl-GPC (20:4n6)b 11 9120 rs174562 FADS2 Intronic NAM (0.59) 7.02 × 10−76 1.02 × 10−4

PC 16:0/20:4 11 9120 rs174562 FADS2 Intronic NAM (0.59) 1.04 × 10−69 1.72 × 10−4

Arachidonoylcholine 11 9120 rs174567 FADS2 Intronic NAM (0.61) 8.82 × 10−28 9.13 × 10−3

PC 18:2/18:2 11 9120 rs3834458 FADS2 Intronic NAM (0.58) 5.97 × 10−26 4.87 × 10−3

LPC 18:2/0:0 11 9120 rs3834458 FADS2 Intronic NAM (0.58) 8.16 × 10−11 1.23 × 10−1

Sphingomyelin (d18:1/20:2, d18:2/20:1, 
d16:1/22:2)b

11 9120 rs3834458 FADS2 Intronic NAM (0.58) 2.24 × 10−10 1.61 × 10−2

PE 16:0/18:2 11 9120 rs5792235 FADS2 Intronic NAM (0.59) 5.40 × 10−29 4.02 × 10−2

PC 18:0/18:2 11 9120 rs5792235 FADS2 Intronic NAM (0.59) 3.80 × 10−11 1.43 × 10−1

PE 18:0/18:2 11 9120 rs5792235 FADS2 Intronic NAM (0.59) 2.32 × 10−22 7.67 × 10−2

LPC P-16:0 or LPC O-16:1 11 9121 rs11230873 FTH1 Intergenic NAM (0.26) 1.60 × 10−10 9.49 × 10−5

MG 20:4 11 9149 rs142021492 — — NAM (—) 2.93 × 10−9 2.21 × 10−3

3beta-hydroxy-5-cholestenoate 11 9317 chr11:110244360 RDX — NAM (—) 6.11 × 10−26 4.75 × 10−2

Ethylmalonate 12 10132 chr12:121176083 ACADS Exonicc AFR (—) 5.72 × 10−13 1.41 × 10−1

Ethylmalonate 12 10,132 rs73415734 — — AFR (—) 5.72 × 10−13 1.82 × 10−2

LPE 16:0/0:0 15 11487 rs1077834 LIPC Intronicc NAM (0.43) 2.32 × 10−14 2.90 × 10−3

LPE 18:0/0:0 15 11487 rs1077834 LIPC Intronicc NAM (0.43) 1.85 × 10−11 4.26 × 10−2

PE 16:0/20:4 15 11487 rs2070895 LIPC Intronic NAM (—) 5.53 × 10−18 3.20 × 10−2

PE 18:0/20:4 15 11487 rs2070895 LIPC Intronic NAM (—) 5.10 × 10−13 1.98 × 10−1

Cys-gly, oxidized 16 12348 chr16:89909429 SPIRE Intronic NAM (—) 1.46 × 10−29 4.68 × 10−2

Cysteinylglycine 16 12348 rs62068366 SPATA2L Intronic NAM (0.28) 8.45 × 10−10 3.14 × 10−2
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1-palmitoyl-2-linoleoyl-GPE (PE) 16:0/18:2 and phos-
phatidylethanolamine (PE) 18:0/18:2, were associated 
with local ancestry regions on both chromosomes 11 and 
15. FADS1/FADS2 are involved in the desaturation of 
fatty acids to generate long-chain polyunsaturated fatty 
acids (LC-PUFAs). LIPC encodes the hepatic triglyceride 
lipase. Both FADS1 and LIPC code for major enzymes 
of the LC-PUFA metabolism and have been previously 
associated with circulating lipids and metabolites [5, 37]. 
Prior studies have shown evidence for Native American 
haplotypes at the FADS1 locus related to reduced PUFA 
metabolism [38–40], and we additionally identified novel 
Native American ancestry metabolite associations for 
SNVs at the FADS2 and LIPC. The ancestral haplogroup 
of the FADS genes, which is associated with a deficient 
biosynthesis of the biologically active form of PUFA (LC-
PUFA), is nearly fixed in Native American populations 
and has replicated signals of positive selection possibly 
related to dietary conditions. Within the FADS cluster, 
rs102274, a SNV intronic to TMEM258 fine-mapped in 
our analysis (Additional File 1: Table S5), has been con-
sidered a causal SNV for LC-PUFA biosynthesis [41]. 
Signatures of selection in Native American populations 
for other genes related to diet have also been found in 
modern populations of Latin America [42].

At the chromosome 2 region, eight N-acetylated amino 
acids were associated with African local ancestry. Con-
ditional analysis identified seven GWAS SNVs, intronic 
to ALMS1/ALMS1P, that explained the admixture map-
ping results in the region (Additional File 1: Table  S6). 
Prior studies using blood transcriptome data support 
associations of N-acetylated amino acid metabolites with 
ALMS1 [43]. This gene has been associated to chronic 
kidney disease [44], a disease with a high burden in indi-
viduals of West African descent in the USA.

Additional novel associations of disease relevance are 
homoarginine at chromosome 15 and carnitine at chro-
mosome 10, for which European ancestry was associ-
ated with low circulation levels of these metabolites. Low 
homoarginine levels are related to endothelial cell dys-
function and cardiovascular disease [45]. The identified 
association is outside the GATM locus at chromosome 
15, previously associated with this metabolite in GWAS 
[46, 47]. Carnitine levels are related to metabolic diseases 
and mitochondrial function [48].

Discussion
This study supports the presence of metabolic differ-
ences across populations based on ancestry admixture, 
which are likely driven by genetic ancestral diversity and 

Fig. 3  COJO SNVs account for admixture mapping signals. The horizontal red line in A and C represents the significance level of 5.04 × 10−9 
for all-ancestry admixture mapping. The horizontal blue line in B and D represents the significance level of 5 × 10−5 for conditional admixture 
mapping. A Admixture mapping results for 2-aminooctanoic acid. B The SNV rs72903325 accounts for the admixture mapping signal in local 
ancestry region 1581 on chromosome 2 for 2-aminooctanoic acid. C Admixture mapping results for arachidonoylcholine. D The SNV rs174567 
accounts for the admixture mapping signal in local ancestry region 9120 on chromosome 11 for arachidonoylcholine



Page 10 of 13Reynolds et al. Genome Medicine           (2023) 15:52 

are potential adaptations to environmental stressors. We 
identified 2127 significant metabolite-local ancestry asso-
ciations for 78 metabolites and 651 local ancestry regions 
within twelve chromosomes. Of the 484 independent 
local ancestry regions, 232 were novel associations, and 
several of them were replicated in an independent sam-
ple of Hispanics/Latinos. Several associated regions were 
driven by Native American ancestry, for which genetic 
variation is less known. Native American is a population 
less often included in genetic studies. Our study supports 
the approach of leveraging genetic ancestry to map genes 
and putative causal variants, as well as to better under-
stand differences in metabolic processes driven by ances-
try in admixed populations. The metabolic pathways 
identified in our study are related to a variety of physio-
logical functions that may be altered in complex diseases 
or involved in response to environmental stressors, such 
as those related to diet restrictions and exposure to path-
ogens. Therefore, our findings have relevance to health 
and disease.

We identified a wide range of lipid-based metabolites 
either negatively or positively associated with ancestry-
specific genomic regions, predominately on chromo-
somes 11 and 15, including some newly identified to 
be associated to these regions. A notable feature of the 
findings was that many of the metabolites contain LC-
PUFAs. For instance, the LC-PUFA arachidonic acid 
(20:4) of the n-6 biosynthetic pathway (esterified to the 
glycerol-based backbone of phosphatidylcholines, phos-
phatidylethanolamines, diacylglycerols, and lysophos-
pholipids) displayed a reduced abundance in individuals 
with Native American ancestry. A reduction in arachi-
donic acid in this population could have several biological 
implications. Arachidonic acid is central in the initiation 
of inflammatory pathways as it undergoes liberation from 
phospholipids and serves as a substrate for enzymes, 
such as cyclooxygenases and lipoxygenases, that generate 
prostaglandins, leukotrienes, and the newer class of pro-
resolution lipoxins [49]. A reduction in these metabolites 
could suggest an increased production of pro-inflamma-
tory molecules. Some literature suggests differences in 
inflammatory status in adults and children may be driven 
by genetic and environmental factors [50]. Future mecha-
nistic studies that tease apart each of these metabolites 
in primary culture models may shed light on their role in 
controlling the inflammatory response in the context of 
specific populations.

Prior literature supports that genetic Native American 
ancestry haplotypes contribute to a fatty acid desatu-
rase SNV that is associated with low levels of LC-PUFAs 
of the n-3 biosynthetic pathway [51]. Interestingly, our 
findings also identified long-chain n-3 PUFAs eicosa-
pentaenoic acid (EPA, 20:5), docosapentaenoic acid, 

and docosahexaenoic acid (DHA, 22:6) as having a low 
abundance association with Native American ancestry 
on chromosome 11. A reduction in EPA and DHA lev-
els is of biological significance as these fatty acids control 
downstream metabolites (such as resolvins, protectins, 
and maresins) that drive the resolution of inflammation 
[52]. Thus, a reduction in these fatty acids may contrib-
ute to impaired resolution of inflammation. Finally, it is 
important to point out that our data revealed changes 
in PUFA metabolism, notably arachidonic acid, across a 
wide range of lipid pools, which are likely impacting bio-
logical processes outside of inflammation.

In another region, the ALMS1 locus was associated 
with an increased abundance of N-acetylated amino 
acids in African ancestry-derived regions, including 
some newly associated metabolites. Prior studies have 
shown evidence of population-specific signals of adapta-
tion in Niger-Congo West Africans at this locus [53]. The 
mechanisms relating the identified metabolic changes 
and gene to disease are not fully understood. ALMS1 has 
been consistently associated with chronic kidney disease 
in population studies [44, 54] and in a monogenic disor-
der (Alstrom syndrome, OMIM #203,800) [33, 55], and 
obesity and insulin resistance in experimental models 
[56]. Chronic kidney disease is more common in individ-
uals of African descent in the U.S. Prior studies support 
African-derived SNVs at another gene (APOL1), related 
to resistance to infectious diseases in Africa, conferring 
risk to chronic kidney disease in Hispanics/Latinos with 
West African admixture. A study has shown that ALMS1 
protein is involved in the regulation of kidney sodium 
transport and blood pressure, through interaction with 
the Na + /K + /2CL-cotransporter (NKCC2) in the 
nephron loop of Henle [57]. NKCC2 sodium reabsorp-
tion is increased in Blacks [58]. These findings provide 
some mechanistic pathways for the relation among Afri-
can ancestry at the ALMS1 locus and chronic kidney dis-
ease, but the association with N-acetylated amino acids 
will require further studies. A nearby gene in this locus, 
NAT8, related to N-acetyltransferase activity, has been 
associated with N-acetylated amino acids abundance 
in blood and urine, but gene expression studies showed 
stronger associations of metabolite-associated SNVs with 
the ALMS1 gene [43]. In addition, a study of admixed 
Brazilians also identified ALMS1 but not NAT8 as most 
significantly associated gene for these metabolites at the 
region [59].

Several other ancestry-driven genomic regions asso-
ciated with metabolites were not previously reported, 
including novel associations for homoarginine and 
carnitine that have implications for cardiometabolic 
diseases. These findings support loci discovery and com-
plementary information to GWAS obtained when testing 
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ancestry-driven genomic regions for loci discovery. For 
some regions previously reported, the GWAS SNV did 
not explain the admixture mapping associations, sup-
porting the presence of additional causal SNV(s) in these 
regions. Other approaches that leverage local ancestry 
for loci discovery and fine-mapping including BMIX [60], 
which tests association at single markers while stratify-
ing by local ancestry patterns at each interval, could be 
extended to test three-way ancestry in studies of His-
panics/Latinos and for mixed models. New strategies for 
fine mapping these regions for potential causal genetic 
variants are needed that may include integration of 
sequencing for rare and low-frequency variants and gene 
expression data generated in admixed populations to bet-
ter query causal variants that are ancestry enriched. This 
effort is particularly important to capture Native Ameri-
can ancestry-enriched genetic variants, given the large 
Native American ancestry proportions in Hispanics/
Latinos.

Conclusions
We identified several ancestry-enriched genomic regions 
associated with metabolites including Native American-
driven regions at chromosomes 11 and 15 related to 
PUFAs that may contribute to metabolic and inflamma-
tory disease in individuals with Native American ances-
try components, and an African-driven genomic region 
related to N-acetylated amino acid compounds previ-
ously identified in chronic kidney disease. These findings 
support ancestry differences in metabolite regulation of 
lipid PUFAs and N-acetylated amino acids, which may 
have implications for common diseases in populations.
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